

Вступ до QGIS та основ картографування

Геокодування і просторова статистика

Unclassified

Адресація геокодування в QGIS

- Ознайомитися з інформацією про адреси геокодування з використанням QGIS і Open Street Map
 - Плагін MMQGIS
 - Геокодування
- Необхідні дані:
 - Шейп-файл UKR_Oblasts_UTM84_35N
 - Файл CSV UP2_Sampling_Effort

Геокодування даних за допомогою інформації про адреси

- У деяких випадках дані записуються на основі розташування, де вони були зібрані з використанням адрес, міст або районів
 - Якщо немає широти/довготи, ми не можемо використовувати методи визначення координат з наших вхідних даних, які ми раніше обговорювали
 - Якщо дані включають просторову інформацію за межами району (міста/адреси), то використання просторового з'єднання з адміністративним кордоном призводить до просторової помилки
- Геокодування дозволяє зіставляти імена або адреси з об'єктами, для яких можуть бути недоступні шейп-файли
 - Використовує на новому рівні бази даних Open Street Map або Google, щоб знайти правильне географічне розташування наших даних

Геокодування в QGIS

- Завантажте плагін MMQGIS для QGIS
- Відкрийте набір даних по вибірці проекту UP-2 (CSV) в Excel
- Перевірте атрибути у нас є тільки назва місця збору зразків, без додаткової інформації про адресу
 - Якщо ми знаємо, що всі точки є великими або малими містами, то маючи шейп-файл міст або місць, ми можемо просторово доєднати ці місця до набору даних по вибірці проекту UP-8 АБО
 - Адреси геокодів

- Плагін MMQGIS дозволяє робити запит у бази даних Open Street Map про відповідність «назві_локації» у файлі відбору UP2 відомим місцезнаходженнями
- MMQGIS→GeoCode→Geocode CSV з веб-сервісом

- Введіть систему координат для геокодування
- Якщо інформація атрибута доступна для адреси, міста і т. д., пропишіть її
 - Припустимо, що Назва_Локації це місто
- Виберіть OpenStreetМар як веб-службу для геокодування
- Виберіть відповідне місце для виведення нового шейп-файлу
- Натисніть кнопку «Застосувати»

Вхідний файл CSV (U	IF-8)	
lass_Lab\William\Ukraine\	UP-OY1\data\UP2_	Sampling_Effort_and_Captures.csv @
Адреса		Місто
(немає)	•	Назва_сайту
Штат		Країна
(немає)	*	(немає)
URL серверу ESRI s://geocode.arcgis.com/ar Обробка дублікатів Використовуйте тільки	cgis/rest/services/ перший результ	World/GeocodeServer/findAddressCan
URL серверу ESRI s://geocode.arcgis.com/ar Обробка дублікатів Використовуйте тільки Назва вихідного фай	cgis/rest/services/ перший результ ілу	World/GeocodeServer/findAddressCand
URL серверу ESRI s://geocode.arcgis.com/ar Обробка дублікатів Використовуйте тільки Назва вихідного фай R:\Glass_Lab\William\Ukra	cgis/rest/services/ перший результ ілу ine\temp\temp1.sl	World/GeocodeServer/findAddressCand ar
URL серверу ESRI s://geocode.arcgis.com/ar Обробка дублікатів Використовуйте тільки Назва вихідного фай R:\Glass_Lab\William\Ukra Не знайденого вихід	cgis/rest/services/ перший результ iny ine\temp\temp1.sl ного списку	World/GeocodeServer/findAddressCand aT
URL серверу ESRI s://geocode.arcgis.com/ar Обробка дублікатів Використовуйте тільки Назва вихідного фай R:\Glass_Lab\William\Ukra He знайденого вихід R:\Glass_Lab\William\Ukra	cgis/rest/services/ перший результ iny ine\temp\temp1.sl ного списку ine\temp\temp1.cs	World/GeocodeServer/findAddressCand rat hp @

- Перевірте вихідний шейп-файл
- Є щось дивне в результатах?
- Перевірте таблицю атрибутів, скільки записів відображається в ній? Скільки їх має бути?

Порівняйте з даними, які вказані з використанням широти/довготи

- Усі точки повинні були потрапити в одну область
- Усі 4 точки з різною широтою/довготою ідентифікуються як такі, що потрапляють в одну точку просторовий ідентифікатор не такий точний

Обмеження

- Геокодування з використанням веб-служби на кшталт Open Street Map (OSM) має обмеження:
 - Назви місць можуть бути написані по-різному, або
 - місця за межами сфери зацікавлення можуть мати однакові назви
 - OSM погано працює з кириличними символами
- Процес геокодування вдосконалений додаванням додаткової інформації про адресу, як-от:
 - Додайте стовпчик «Країна», щоб спробувати обмежити збіги територією країни, яка цікавить вас.
 - Додайте стовпчик «Район», щоб спробувати обмежити збіги в межах певного району
 - Використовуйте Open Street Мар для пошуку правильних умовних позначень про імена, додавайте/редагуйте вхідні дані відповідно до написання назв місць в OSM

Ресурси геокодування

Автор MMQGIS: <u>http://michaelminn.com/linux/mmqgis/</u>

Посібник з геокодування за допомогою MMQGIS: <u>https://www.gislounge.com/how-to-geocode-addresses-using-qgis/</u>

URL cepsicy ESRI:

https://geocode.arcgis.com/arcgis/rest/services/World/GeocodeServer/fi ndAddressCandidates

Отримати ключ API GOOGLE:

https://developers.google.com/maps/documentation/geocoding/start#g et-a-key

Перерва

• Чи є у вас запитання?

Аналіз точкових рисунків та виявлення кластерів

- Сприяє оцінці розподілу об'єктів на ландшафті для просторової кластеризації або дисперсії, використовуючи методи аналізу точкових рисунків або агреговані просторові автокореляційні методи
- Ознайомлює з багатьма методологіями PPA з використанням QGIS

Огляд тем

- Описова просторова статистика
 - Забезпечує розуміння загальних властивостей розподілу точок (об'єктів) та їх значень на ландшафті
 - Середній центр
 - Еліпс стандартних відхилень
 - Стандартні відстані
- Ядрова оцінка густини розподілу
 - Процедура оцінки, яка використовується для визначення очікуваної кількості об'єктів на одиницю площі з використанням алгоритму згладжування
 - Вимагає розрахунку стандартної відстані
 - Розрахунок оптимального діапазону для функції згладжування

Описова просторова статистика

- Середній центр
 - Описує центр розподілу вибірки та надає уявлення про географічне зміщення місць або значень вибірки
 - Незважений центр точкового розподілу
 - Зважений центр зважених значень щодо точкового розподілу
- Еліпс стандартних відхилень
 - Характеризує спрямованість у розподілі місць вибірки
 - Характеризує розсіювання точок навколо середнього центру
 - Незважений спрямованість/розсіювання точкового розподілу
 - Зважений спрямованість/розсіювання значень у точковому розподілі
- Стандартна відстань
 - Вимірює розподіл локацій відбору проб
 - Може використовуватися для порівняння розподілу декількох наборів точок
 - Незважений розсіювання точкового розподілу
 - Зважений розсіювання значень у точковому розподілі

Приклад: Відбір зразків від дрібних ссавців у Волинській області, в рамках проекту UP-2

- Дрібні ссавці зловлені у численних місцях по всій Волині протягом 2012-2013 років
- Пастки, встановлені на кілька ночей у кожній місцевості (мінімум = 10, максимум = 300 пасток)
- Близько 19 різних видів дрібних ссавців були ідентифіковані у місцях, де були розставлені пастки
- Був спійманий 2 121 ссавець на всіх ділянках
- Обчислено ВНОЗ (вилов на одиницю зусилля) для стандартизації коефіцієнта вилову в різні проміжки часу

Приклад описової просторової статистики: Дані про відлов ссавців, в рамках проекту UP2

- Відкрийте QGIS і завантажте:
 - Шейп-файл Volyn_Oblast
 - Шейп-файл
 UP2_Sampling_Effort
- Відкрийте таблицю атрибутів для точок UP2_Sampling_efforts і оцініть різноманітні атрибути

Середній центр – дані про відлов ссавців в рамках проекту UP2

- На панелі інструментів оберіть:
 Вектор→Інструменти для аналізу→Середні координати
- Виберіть UP2_Sampling Effort, як початковий шар
- Виберіть команду «Запустити»
- Тепер обчисліть зважений середній центр. Повторіть кроки, як описано вище, та виберіть поле масивів
- Яке поле підходить найбільше для оцінювання розрахунків? Чому?

- Зелений незважений
- Червоний зважений загальним ВНОЗ
- Про що говорить розташування середніх центрів стосовно розподілу місць відбору?

Еліпс стандартних відхилень (ЕСВ)

- Описує будь-яку спрямованість в розподілі точок вибірки
- Може бути зваженим або незваженим
 - Незважений ЕСВ Чи існує спрямована тенденція у географічному розподілі точок
 - Місця збору зразків, окремі об'єкти, конкретні випадки
 - Зважений ЕСВ Чи існує спрямована тенденція у значеннях через розподіл точок
 - ВНОЗ, поширеність та інші агреговані показники

ЕСВ – дані про відлов ссавців, в рамках проекту UP2

- Щоб розрахувати Еліпс стандартних відхилень, завантажте плагін ЕСВ
 - Плагіни Керування та встановлення плагінів
 - Знайдіть «Еліпс стандартних відхилень»
 - Виберіть і натисніть кнопку «Установити плагін»
 - Закрийте вікно

ЕСВ – дані про захоплення ссавців UP2

- Відкрийте плагін Еліпс стандартних відхилень
 - Вектор-ЭЕліпс стандартних відхилень
- Виберіть метод «Yuill»
- Виберіть «UP2_Sampling Effort» як вхідний шар
- Зніміть позначку «Лише вибрані функції»
- Виберіть «виправлення sqrt(2)» та «виправлення DF»
- Натисніть ОК
- Повторіть, цього разу вибравши відповідне зважене поле
- Закрийте вікно

💋 Еліпс стандартних відхилен	5	?	×
Метод • Yuill	"CrimeStat"		
Вхідний (точковий) векторни	ulap		
UP2_Sampling_Effort_and_Captu	res		-
Використати вагова Поле ваги СРUЕ всьо	0		•
Тільки вибрані функції	<u> </u>		
Виправлення Виправлення sqrt(2)	🗹 виправлення DF		
Вихідний (полігональний) век	орний шар		
SDE_Yuill_UP2_Sampling_Effort_a	nd_Captures		
0%	ОК Закрити Відміна	Допо	омога

- Червоний Зважений ЕСВ
- Зелений незважений ЕСВ
- Зважений еліпс зміщений на південь. Що означає розподіл вилову ссавців (ВНОЗ) щодо розподілу місць відбору проб?

Кола стандартної відстані

- Вимірює розповсюдження точкових локацій
- Може використовуватися для вимірювання розподілів кількох обмірювань або об'єктів
- Може бути зваженим або незваженим
- Корисно для виконання ядрової оцінки густоти розподілу
 - Незважена «Стандартна відстань» дисперсія точкових локацій
 - Зважена «Стандартна відстань» дисперсія значень пов'язаних з точковими локаціями
 - Наразі недоступно в QGIS

Стандартна відстань – дані про відлов ссавців, в рамках проекту UP2

- Відкрийте панель інструментів для обробки SAGA
 - Обробка→Інструменти→SAGA
- Виберіть «Аналіз просторових точок» в меню «Геостатистика».
- Виберіть «UP2_Sampling Effort» як вхідний шар точок
- Зніміть прапорець з опції «Гранична рамка»
- Натисніть «Запустити»
- Закрийте вікно

🕺 Аналіз просторових точок	?	×
Параметри Журнал	Sanyahri arrango	dingages.
Точки		
UP2_Sampling_Effort_and_Captures [EP5G:4326]	۰	9
Binerous vier consummer [Consum]		
5	٥]
Центр ваги		
[Зберегти у тимчасовому файлі]		
Відкрити вихідний файл після запуску алгоритму		
Стандартна відстань		
[Зберегти у тимчасовому файл]		
Відкрити вихідний файл після запуску алгоритму		
Обмежувальний блок		
[Зберети и тилизсоволи файл]]		
Відкрити вихідний файл після запуску алгоритму		
		0%
3ar	пустити Зал	срити

- Незважена Стандартна відстань
 - Зосереджується у відносному центрі усього розподілу точок
- Стандартне коло відстані порівняно велике — точки ширше розсіяні навколо відносного центру

Перерва

Запитання?

Ядрова оцінка густини розподілу – ЯОГР

- Метод оцінки густини точок або значень на основі кінцевих вхідних даних — точкових або лінійних даних.
- Прогнозовані значення плавно зменшуються зі збільшенням відстані (сусідства) від вхідних значень.
- Вихідні дані створюють безперервну растрову поверхню, яка представляє прогнозовані щільності точок або значень
 - Застосування оцінка густини об'єктів/подій, загальна чисельність населення, ВНОЗ

Визначення пропускної здатності кернфункції

- Керн-функція зменшується до значення
 0 на вказаній відстані від вхідної функції (пропускна здатність)
- Розрахунок відповідної пропускної здатності, який необхідний для ядрової оцінки густини розподілу
- Потребує розрахунку стандартної відстані
 - Розмір оптимальної пропускної здатності залежить від дисперсії місць відбору зразків
- N=кількість спостережень, о= Стандартна відстань

$$h_{opt} = \frac{2^{1/4}}{3n} * \sigma$$

Ядрова оцінка густини розподілу (ЯОГР) в QGIS

- Завантажте плагін «карта інтенсивності»
 - Процедура аналогічна завантаженню плагіна ЕСВ
- Відкрийте плагін «Карта інтенсивності»
 - Растр → карта інтенсивності → карта інтенсивності
- Виберіть UP2_Sampling Effort шар точок як вхідний шар
- Виберіть відповідне місце розташування вихідного растру
- Радіус буде розрахований h_{opt}
- Виберіть «Додаткові параметри»
- Виберіть відповідний розмір комірки (переконайтеся, що одиниці виміру коректні)
 - Якщо одиницями вимірювання карт є метри, розмір комірок повинен бути в метрах

адіус Додан	5000	- 	PTy		одиниць шару 💌
▼ 🗹 До,	датково	÷	Ctosnul	396	•
змір комірки)	400		Розмір комірки У	400	
Викори з поля Викори поля Коефіц	истовувати радіус истовувати вагу з цієнт згасання	0.0		▼ одиниць и	uapy 👻
Вихідні	значення	Необробле	ні значен	ня	•

Потім обріжте растр ЯОГР за розміром шейпфайлу Волинської області

- Растр→Вилучення→Відсікання
- Виберіть відповідне ім'я вихідного файлу та місце розташування
- Виберіть «Шар маски» як режим відсікання
 - Шаром маски повинна бути Волинська область, тому що це область дослідження
 - Виберіть опцію, щоб обрізати виступаючі межі відповідно до контурів шару маски
- Натисніть ОК

ідний файл	Weighted_KDE_UP2_Sa	mplingEffort_UTM84_35N_clipped.ti	f Вибрати
Немає значення дати	0		\$
Режим відсікан	ня		
О Діапазон		💿 Шар, що маскує	
Створити ви	n_Oblast_UTM84_35N ихідний альфа-діапазон змір цільової бази даних і	до ступеня лінії порізу	Виорати
• Зберегти до	звіл вхідного растру	О Установити дозвіл вихіді	ного файлу
Завантажте в г	іолотно, коли закінчите		
dalwarp -g -cutline	N Ikraine /Test datasets/E	xample shapefiles/Volvn Oblast UT	M84_35N

Що карта ЯОГР говорить про чисельність дрібних ссавців по території всієї Волині?

Спробуйте повторити цю процедуру з іншим коефіцієнтом зважування з таблиці атрибутів UP2_sampling_effort.

Оцінювання кластеризації просторових даних

- Оцінювання кластеризації просторових даних є важливим кроком у
 - Оцінці плану дослідження
 - Перевірка правильності припущень
 - Виконання аналізу точкових рисунків, виявлення гарячих точок і оцінювання просторової автокореляції
- Що таке просторово автокорельовані (ПА) дані?
 - Дані, які пов'язані між собою з першого закону географії: «Усе пов'язано між собою, але близькі речі пов'язані більше, ніж віддалені»
 - Позитивні ПА дані: характеристики та їх значення ближче один до одного, ніж очікувалося методом випадкового вибору
 - Негативні ПА дані: характеристики та їх значення далі один від одного, ніж очікувалося методом випадкового вибору
- Які типи запитань можна поставити про автоматично корельовані дані?
 - Чи присутня на ландшафті кластеризація? Чи присутнє розсіювання?
 - У яких просторових масштабах спостерігається кластеризація/розсіювання?
 - Де відбувається кластеризація/розсіювання на ландшафті?

Середній індекс найближчих сусідніх елементів (СІНСЕ)

- Наскільки близько розташовані сусідні точки на нашому ландшафті?
- Вони знаходяться ближче чи дальше один від одного, ніж можна було б очікувати відповідно до повної просторової випадковості (csr)
- СІНСЕ визначає чи відбувається кластеризація або дисперсія на ландшафті, і яка ймовірність такого твердження
 - Н₀: і кластеризація, і дисперсія відсутні.
 - Відношення найближчих сусідніх елементів (ВНСЕ) визначається як середня визначена відстань між точками, поділена на очікувану середню відстань теоретичного розподілу
 - Значення відношення х<1 присутня кластеризація
 - Значення відношення х>1 присутня дисперсія

Приклад: Розподілення місць відлову ссавців на Волині

- Відкрийте інструмент «Аналіз найближчих сусідніх елементів»
 - Інструменти для обробки → QGIS геоалгоритми → Інструмент для векторного аналізу → Аналіз найближчих сусідніх елементів
- Виберіть шейп-файл локацій відбору проб в рамках проекту UP2
- Нема необхідності вказувати вихідне розташування

- СІНСЕ порівнює визначену середню відстань з очікуваною середньою базовою відстанню
- BHCE =0,079, тобто > 0, отже присутня незначна кластеризація
- Z-значення дуже перевищує значення в «хвості» розподілу, що свідчить про високу ймовірність того, що точки НЕ є у повній просторовій випадковості (CSR)

